Baker-akhiezer Function as Iterated Residue and Selberg-type Integral

نویسندگان

  • GIOVANNI FELDER
  • ALEXANDER P. VESELOV
چکیده

A simple integral formula as an iterated residue is presented for the Baker-Akhiezer function related to An type root system both in the rational and trigonometric cases. We present also a formula for the Baker-Akhiezer function as a Selberg-type integral and generalise it to the deformed An,1case. These formulas can be interpreted as new cases of explicit evaluation of Selberg-type integrals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Orthogonality Relations and Cherednik Identities for Multivariable Baker–akhiezer Functions

We establish orthogonality relations for the Baker–Akhiezer (BA) eigenfunctions of the Macdonald difference operators. We also obtain a version of Cherednik–Macdonald–Mehta integral for these functions. As a corollary, we give a simple derivation of the norm identity and Cherednik–Macdonald–Mehta integral for Macdonald polynomials. In the appendix written by the first author, we prove a summati...

متن کامل

Bispectrality for deformed Calogero–Moser–Sutherland systems

We prove bispectral duality for the generalized Calogero–Moser–Sutherland systems related to configurations An,2(m), Cn(l,m). The trigonometric axiomatics of Baker–Akhiezer function is modified, the dual difference operators of rational Macdonald type and the Baker–Akhiezer functions related to both series are explicitly constructed.

متن کامل

Finite gap theory of the Clifford torus

In this paper we construct the spectral curve and the Baker–Akhiezer function for the Dirac operator which form the data of the Weierstrass representation of the Clifford torus. This torus appears in many conjectures from differential geometry (see Section 2). By constructing this Baker–Akhiezer function we demonstrate a general procedure for constructing Dirac operators and their Baker–Akhieze...

متن کامل

Numerical computation of the finite-genus solutions of the Korteweg-de Vries equation via Riemann-Hilbert problems

In this letter we describe how to compute the finite-genus solutions of the Korteweg-de Vries equation using a Riemann-Hilbert problem that is satisfied by the Baker-Akhiezer function corresponding to a Schrödinger operator with finite-gap spectrum. The recovery of the corresponding finite-genus solution is performed using the asymptotics of the Baker–Akhiezer function. This method has the bene...

متن کامل

Separation of variables for the D n type periodic Toda lattice

We prove separation of variables for the most general (Dn type) periodic Toda lattice with 2 × 2 Lax matrix. It is achieved by finding proper normalisation for the corresponding Baker-Akhiezer function. Separation of variables for all other periodic Toda lattices associated with infinite series of root systems follows by taking appropriate limits.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008